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Charged Kerr± NUT Metric with Lambda-Term and
Step-by-Step Extension Method
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The charged Kerr±NUT metric with L term is derived using a step-by-step
extension method.

1. INTRODUCTION

More than 30 years ago, Newman et al. (1963) discovered a new metric,

now called the NUT metric. The NUT metric is one of the exact solutions

of the Einstein vacuum field equations and is different from the Schwarz-
schild metric.

A number of papers related to the NUT variable l have since been

published (Demianski and Newman, 1966; Demianski, 1973; Kinnersley,

1969; Frolov, 1974; Misner, 1963; Quevedo and Mashhoom, 1991). The most

complicated treatments are Frolov (1974) and Quevedo and Mashhoom

(1991).
Frolov dealt with the Kerr±NUT±de Sitter metric in the retarded time

coordinate by using the Newman±Penrose (NP) spin formalism. His main

result is his metric equation (6.9), which reduces to the Kerr±de Sitter’ s

metric when the NUT variable l 5 0.

The disadvantages of Frolov’ s approach are as follows:
1. The constants involved in equation (6.9) are ambiguous and obscure.

Perhaps this originates from the direct solution of the NP spin equations. If

we substitute the metric (6.9) back into the Einstein field equations in de

Sitter space in metric form.
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R a b 1 L g a b 5 0

some of the constants may be ª fixedº in form, i.e., expressed by physical

parameters, such as m, a, l, and L .

2. When L 5 0, Frolov’ s metric (6.9) cannot be reduced to the Kerr±NUT

metric of Kinnersley (1969); in particular, gu f is incorrect. From the dimen-

sional point of view, gu f is obviously incorrect. gu f involves five terms. The
dimension of mr(C2 2 r 02) is 4, while the dimension of each of the remaining

terms is 2.

3. The Kerr±de Sitter metric given by Frolov is irregular in the neighbor-

hood of the rotation axis.

One of the disadvantages of Queredo and Mashhoom’ s work is that they

did not give the explicit form of the charged Kerr±NUT metric in quasi-
Boyer±Lindquist coordinates.

The main aims of the present paper are to derive the charged Kerr±NUT

metric in de Sitter space and to demonstrate our step-by-step extension

(SSE) method.

2. THE STEP-BY-STEP EXTENSION METHOD

2.1 The NUT Metric

The line element of the NUT metric is (Newman et al., 1963)

ds2 5 F 2
2(mr 1 l 2)

r 2 1 l 2 G dt2

2
1

[1 2 2(mr 1 l 2)/(r 2 1 l 2)]
dr2 2 (r 2 1 l 2) d u 2 (1)

2 4l cos u F 1 2
2(mr 1 l 2)

r 2 1 l 2 ] dt d f 2 H (r 2 1 l2) sin2 u

2 4 l 2 cos2 u F 1 2
2(mr 1 l 2)

r 2 1 l 2 G J d f 2

It is easy to show that the metric (1) is singular or violates the local
flatness condition in the neighborhood of the symmetry axis (Kramer et
al., 1980). This slight disadvantage can be remedied or nonsingularized by

changing ( 2 cos u ) to (1 2 cos u ) for 0 # u # p /2, and to (1 1 cos u ) for

p /2 # u # p , in equation (1). The line element becomes
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ds2 5 F 1 2
2(mr 1 l 2)

r 2 1 l 2 G dt2 2
1

[1 2 2(mr 1 l 2)/(r 2 1 l 2)]
dr2

1 4l (1 7 cos u ) F 1 2
2(mr 1 l 2)

r 2 1 l 2 G dtd f 2 (r 2 1 l 2) d u 2

2 H (r 2 1 l 2) sin2 u 2 4l 2(1 7 cos u )2 F 1 2
2(mr 1 l 2)

r 2 1 l 2 G J d f 2 (2)

Obviously, the metric (2) is local or exhibits elementary flatness.

2.2 First Step of the Extension

In this subsection we will extend the NUT metric to include the L term.

The suggested metric is as follows:

ds2 5 F 1 2
2(mr 1 l 2)

r 2 1 l 2 1 B (r) G dt2 2
1

[1 2 2(mr 1 l 2)/(r 2 1 l2) 1 B (r)]
dr2

2 (r 2 1 l 2) d u 2 1 4l (1 7 cos u ) F 1 2
2(mr 1 l 2)

r 2 1 l 2 1 B (r) G dt d f

2 H (r 2 1 l 2) sin2 u

2 4l 2(1 7 cos u )2 F 1 2
2(mr 1 l 2)

r 2 1 l 2 1 B (r) G J d f 2 (3)

where B (r) is an unknown function to be determined.

The Einstein±Maxwell equations with a L term are given by

R a b 2 1±2 g a b R 2 L g a b 5 2 2[F a
l F b l 2 1±4 g a b F l t F

l t ] (4a)

(4a) can be recast as

R a b 1 L g a b 5 2 2[F a
l F b l 2 1±4 g a b F l t F

l t ] (4b)

When the electromagnetic (EM) field F a b 5 0, (4b) reduces to

R a b 1 L g a b 5 0 (5)

Now consider the (22)-component of equation (5), i.e.,

R22 1 L g22 5 0 (6)

From equation (3) we can evaluate R22, which is
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R22 5 B (r) 2 [B8(r)]r 2
2r 2

r 2 1 l 2 B (r) (7)

Combining equations (6) and (7), we get

B (r) 2 [B8(r)]r 2
2r 2

r 2 1 l 2 B (r) 2 L (r 2 1 l 2) 5 0 (8)

The solution of equation (8) is

B (r) 5 2
1

3
L

1

r 2 1 l 2 [r 4 1 6l 2r 2 2 3l 4] (9)

One can check that the solution satisfies all the remaining components of
equation (5).

2.3 Second Step of the Extension

Now we take the second step in the extension of the NUT metric. The
suggested metric is

ds2 5 F 1 2
2(mr 1 l 2)

r 2 1 l 2 1 D (r) G dt2 2
1

[1 2 2(mr 1 l 2)/(r 2 1 l 2) 1 D (r)]
dr2

1 4l (1 7 cos u ) F 1 2
2(mr 1 l 2)

r 2 1 l 2 1 D (r) G dt d f 2 (r 2 1 l 2) d u 2

2 H (r 2 1 l 2) sin2 u

2 4l 2(1 7 cos u )2 F 1 2
2(mr 1 l 2)

r 2 1 l 2 1 D (r) G J d f 2 (10)

where

D (r) 5 B (r) 1 H(r)
(11)

B (r) 5 2
1

3
L

r 4 1 6r 2l 2 2 3l 4

r 2 1 l 2

H (r) is another unknown function to be determined.

The related or associated EM potential is

A a dx a 5
Qr

r 2 1 l 2 [dt 2 2l (1 7 cos u ) d f ] (12)

Similar to Section 2.2, we can compute R22 from equation (10); the final

result is
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R22 5 D (r) 2 [D8(r)]r 2
2r 2

r 2 1 l 2 D (r)

5 B (r) 1 H (r) 2 [B8(r) 1 H 8(r)]r 2
2r 2

r 2 1 l 2 [B (r) 1 H (r)] (13)

Upon utilization of equation (13), it is easy to show that

R22 1 L g22 5 H (r) 2 [H 8(r)]r 2
2r 2

r 2 1 l 2 H (r) (14)

From equation (12) we get

T22 5 2 2[F2
l F2 l 2 1±4 g22F l t F

l t ] (15)

5
Q 2

r 2 1 l 2

The (22)-component of the Einstein±Maxwell equations with L term

R22 1 L g22 5 T22 (16)

becomes

H (r) 2 [H 8(r)]r 2
2r 2

r 2 1 l 2 H (r) 5
Q 2

r 2 1 l 2 (17)

The solution of (17) is

H (r) 5
Q 2

r 2 1 l 2 (18)

The charged NUT metric in de Sitter space is

ds2 5 F 1 2
2(mr 1 l 2)

r 2 1 l 2 1
Q 2

r 2 1 l 2 2
1

3
L

r 4 1 6r 2l 2 2 3l 4

r 2 1 l 2 G dt2

2
1

F 1 2
2(mr 1 l 2)

r 2 1 l 2 1
Q 2

r 2 1 l 2 2
1

3
L

r 4 1 6r 2l 2 2 3l 4

r 2 1 l 2 G
dr2

2 (r 2 1 l 2) d u 2

1 4l (1 7 cos u ) F 1 2
2(mr 1 l 2)

r 2 1 l 2 1
Q 2

r 2 1 l 2

2
1

3
L

r 4 1 6r 2l 2 2 3l 4

r 2 1 l 2 G dt d f
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2 H (r 2 1 l 2) sin2 u 2 4l 2(1 7 cos u )2 F 1 2
2(mr 1 l 2)

r 2 1 l 2

1
Q 2

r 2 1 l 2 2
1

3
L

r 4 1 6r 2l 2 2 3l 4

r 2 1 l 2 G J d f 2 (19)

3. KERR± NUT± DE SITTER METRIC

In this section, we derive the Kerr±NUT±de Sitter metric from the

Kerr±NUT metric (Kinnersley, 1969) by the SSE method. The suggested

metric is

ds2 5
1

S l
[ D l 2 D s a 2 sin2 u ] dt2 2

( l

D l
dr2 2

( l

D s
d u 2 1

2N

( l
dt d f

2
1

( l

{ D s (r 2 1 a 2 1 l 2)2 sin2 u 2 D l (a sin2 u 2 2l cos u )2} d f 2 (20)

where

( l 5 r 2 1 (l 1 a cos u )2

D l 5 r 2 2 2mr 1 a 2 cos2 u 2 l 2

5 D 2 a 2 sin2 u

D 5 r 2 2 2mr 2 l 2 1 a 2 (21)

D l 5 r 2 1 a 2 2 2mr 2 l 2 1 B (r, u )

5 D 1 B (r, u )

D s 5 1 1 S (r, u )

N 5 [ D s (r 2 1 a 2 1 l 2) 2 D l ]a sin2 u 1 (2l cos u ) D l

Here B (r, u ), S (r, u ) are two unknown functions to be determined. In what

follows we choose that B (r, u ) 5 B (r), S (r, u ) 5 S ( u ). Note that each of

the unknown functions B (r, u ), S (r, u ) is proportional to the cosmological

constant L . When L 5 0, we have B (r) 5 0, S ( u ) 5 0, and the metric (20)

reduces to the Kerr±NUT metric in quasi-Boyer±Lindquist coordinates.

In the calculation, we frequently use the following important identity:

( 2
l D l L s sin2 u 2 N 2

5 [ D l 2 D s a 2 sin2 u ][ D s (r 2 1 a 2

1 l 2)2 sin2 u 2 D l (a sin2 u 2 2l cos u )2] (22)
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From the suggested metric (20), one can evaluate the Christoffel symbols of

the first and second kinds [ a b , l ], G l
a b , and the Ricci tensor R a b ; for example,

R00 5 R a
0 a 0

5 - a G a
00 2 - 0 G a

a 1 G a
l a G l

00 2 G a
l 0 G l

0 a (23)

After lengthy and tedious but straightforward calculation, we arrive at the
important immediate stage expression of R00,

R00 5 R
(0)
00 1 R

(1)
00 1 R

(2)
00 (24)

where

R
(0)
00 5 0 (25)

R
(1)
00 5

1

( 3
l

B ( D 1 a 2 sin2 u ) 2
1

( 3
l

( D 1 a 2 sin2 u )r
- B

- r
1

1

2 ( 2
l

D
- 2B

- r2

1
1

( 3
l

S [2a 2 sin2 u ( 2 a 2 1 mr 1 l 2) 2 2(la cos u 1 a 2cos2 u ) D ]

2
1

( 3
l

a sin u (l 1 a cos u )( D 1 a 2sin2 u )
- S

- u

2
3

2 ( 2
l

a 2sin u cos u
- S

- u
2

1

2 ( 2
l

a 2sin2 u
- 2S

- u 2 (26)

R
(2)
00 5

1

( 3
l

[B 2 2 S 2a 4sin4 u ] 2
1

( 3
l

[B 1 Sa2sin2 u ]r
- B

- r
1

1

2 ( 2
l

B
- 2B

- r2

2
1

( 3
l

(l 1 a cos u ) F a sin u
- S

- S
1 2Sa cos u G [B 1 Sa2sin2 u ]

2
1

2 ( 2
l

a 2sin2 u S
- 2S

- u 2 1
1

( 2
l

a 2sin2 u S2

2
3

2 ( 2
l

a 2sin u cos u S
- S

- u
(27)

Mathematically, since the cosmological constant L can take arbitrary

values, at least in certain intervals or ranges, the field equations can be

divided into

R
(1)
00 1 L g

(0)
00 5 0 (28a)

R
(2)
00 1 L g

(1)
00 5 0 (28b)
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where

g
(0)
00 5

1

( l

[ D 2 a 2sin2 u ] (29a)

g
(1)
00 5

1

( l

[B (r) 2 S ( u )a 2sin2 u ] (29b)

Through calculation we find that equation (28a) can be further decomposed
into two other independent equations, only one of which involves m. From

these three independent field equations, finally we find

B (r) 5 2 1±3 L [r 4 1 a 2r 2 1 6l 2r 2 2 3l 4 1 3a 2l 2] (30)

S ( u ) 5 1±3 L (4l 1 a cos u )a cos u (31)

Take the coordinate transformation

t ® t8 5 ! At f ® f 8 5 ! A f (32)

or

dt ® dt8 5 ! A dt d f ® d f 8 5 ! A d f (33)

where A is a positive constant, independent of coordinates t, r, u , f . The

metric (20) becomes

ds2 5 A
1

( l

[ D l 2 D s a 2sin2 u ] dt2 2
( l

D l
dr2 2

( l

D s
d u 2 1

2A

( l

N dt d f

2 A
1

( l

{ D s (r 2 1 a 2 1 l 2)2 2 D l [a sin2 u 2 2l cos u ]2} d f 2

D l 5 r 2 1 a 2 2 2mr 2 l 2 1 B(r) 5 D 1 B(r) (34)

D s 5 1 1 S( u )

B(r) 5 2 1±3 L [r 4 1 a 2r 2 1 6l 2r 2 2 3l 4 1 3a 2l 2]

S( u ) 5 1±3 L (4l 1 a sin u )a cos u

By performing the coordinate transformation

dt ® dt8 5 du 1
1

! A D l
(r 2 1 a 2 1 l 2)dr

(35)

d f ® d f 8 5 d f 1
1

! A D l
a dr
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where u is the retarded time, we can transform the metric (34) into

ds2 5 A
1

( l

[ D l 2 D s a 2sin2 u ] du2 1 2 ! A du dr 1 2A
N

( l

du d f

2 2 ! A(a sin2 u 2 2l cos u ) dr d f 2
( l

D s
d u 2

2 A
1

( l

{ D s (r 2 1 a 2 1 l 2)2sin2 u

2 D l [a sin2 u 2 2l cos u ]2} d f 2 (36)

The solution or metric (20), (21), (30), (31) satisfies the other components

of the Einstein vacuum field equations with L term. In addition, when L 5
0, and we set A 5 1, our solution or metric (36) directly reduces to the

Kerr±NUT metric (3.47) of Kinnersley (1969). Finally, the Kerr±de Sitter
metric given by Frolov (1974) does not have local flatness in the vicinity of

the rotation axis. This can be remedied by introducing the factor A and putting

A 5 [1 1 1±3 L a 2] 2 2 (37)

4. CHARGED KERR± NUT METRIC IN DE SITTER SPACE

We will derive the charged Kerr±NUT±de Sitter metric from the charged

Kerr±NUT metric and the Kerr±NUT±de Sitter metric by the SSE method.

The suggested metric and EM potential are

ds2 5
1

( l

[ D l 2 D s a 2sin2 u ] dt2 2
( l

D l
dr2 2

( l

D s
d u 2 1 2

N

( l

dt d f

2
1

( l

[ D s (r 2 1 a 2 1 l 2)2sin2 u

2 D l (a sin2 u 2 2l cos u )2]d f 2 (38)

A a dx a 5
Qr

( l

[dt 2 (a sin2 u 2 2l cos u )d f ] (39)

where

D l 5 r 2 2 2mr 1 Q 2 2 l 2 1 a 2cos2 u 5 D 2 a 2sin2 u

D 5 r 2 2 2mr 1 Q 2 2 l 2 1 a 2

D l 5 r 2 1 a 2 2 2mr 1 Q 2 2 l 2 1 B (r) 5 D 1 B (r) (40)

D s 5 1 1 S ( u )
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N 5 D s (r 2 1 a 2 1 l 2)a sin2 u 2 D l (a sin2 u 2 2l cos u )

( l 5 r 2 1 (l 1 a cos u )2

B (r) and S ( u ) are unknown functions to be determined.

From equations (38)±(40) we can derive

R00 5
1

( 3
l

[ D 2
l 2 D 2

s a 4sin4 u ] 2
r

( 3
l

[ D l 2 D s a 2sin2 u ]
- D l

- r
1

1

2 ( 2
l

D l
- 2 D l

- r 2

2
1

( 3
l

[ D l 1 D s a 2sin2 u ](l 1 a cos u ) F a sin u
- D s

- u
1 2 D s a sin u G

1
1

( 2
l

D 2
s a 2sin2 u 2

3

2 ( 2
l

D s a 2sin u cos u
- D s

- u

2
1

2 ( 2
l

D s a 2sin2 u
- 2 D s

- u 2 (41)

etc., and

T00 5 2 2[F 0
l F0 l 2 1±4 g00F l t F l t ] (42)

5
Q 2

( 3
l

[ D l 1 D s a 2sin2 u ]

etc.

Next, upon utilization of the decomposition relations

D l 5 D 1 B (r), D s 5 1 1 S ( u ) (43)

and using procedures similar to those of section 3, we arrive at

B (r) 5 2 1±3 L [r 4 1 a 2r 2 1 6r 2l 2 2 3l 4 1 3a 2l 2] (44)

S ( u ) 5 1±3 L [4l 1 a sin u ]a cos u (45)

Equations (38), (44), and (45) are the same as equations (20), (30), and (31),

except that D , and D of (38) involve an additional term Q 2. The functions
B (r), S ( u ) are independent of the EM field, or Q 2, and are, to the same

extent, similar to the l 5 0 case.

5. DISCUSSION

When l 5 0, the metric (38) and the EM potential reduce to the Kerr±

Newman±de Sitter metric and the related EM potential.

When L 5 0, the metric (38) reduces to the charged Kerr±NUT metric.
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When Q 5 0, the metric (38) reduces to the Kerr±NUT±de Sitter metric.

The metric (38) together with (39), (40) are checked by directly substitut-

ing them into the Einstein±Maxwell equations with L term for other
components.

This work can be extended to cases which involve the gravitational

multipole moment.
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